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This paper presents a more accurate approximation of the mathematical relationship between riser 
tension and parachute drag area during inflation than is typically used in the reduction of test data to obtain 
important parachute performance characteristics. Drag area time history and related characteristics, such as 
inflation parameters, are derived from measurements of tension in the parachute-payload connection, of 
dynamic pressure, and of position. Typically, to form the relationship between the measured values and drag 
area, the tension measurement is assumed to be equal to the drag force of the parachute and, subsequently, to 
the product of drag area and measured dynamic pressure. Through this relationship the drag area is 
determined as the quotient of the riser tension and the dynamic pressure. This paper presents the actual 
relationship including terms for the apparent mass and the time rate of change of the apparent mass, the 
difficulty in the determination of which is most likely the primary deterrent in using a more complete 
formulation of drag area and other parameters. This challenge is addressed in this paper by relating the 
apparent and added mass to the inflating parachute geometry and to the freestream velocity. The basis by 
which this is done is reviewed, values of apparent and added mass for a specific test are computed, and 
comparisons of drag area determined by the typical relationship and the more exact relationship are made. 

Nomenclature 
Symbols 
 
a = acceleration 
Aj = acceleration vector or tensor 
Ajk = apparent mass tensor 
CDS = drag area of parachute 
DP = drag force parachute 
F = force 
FT = riser tension 
mA = added mass of parachute 
mI = included mass of parachute 
Mij = apparent mass matrix or tensor 
mp = mass of parachute 
q = dynamic pressure 
T = kinetic energy 
U, Ui = freestream velocity, component of freestream velocity 
ui, uij = component of fluid velocity 
vp = velocity of parachute 
V = volume of pressurized region of parachute 
WP = weight of parachute 
xi = component of Cartesian coordinate system 
γ =  flight path angle 
φ = velocity potential function 
ρ =  density 
 
Acronyms 
TMS =  Tension Measurement System 
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I. Introduction 
ommon procedures for producing parachute inflation characteristics and simulation input parameters rely on a 
simplified relationship between the parachute drag area, CDS, and test measured forces, FT, in the parachute-

payload connection and test measured dynamic pressure, q. This simplification is legitimate in that the determination 
of the additional values required to formulate a more exact determination of drag area growth may not be practical 
when considering the needs of customers and the objectives of projects. However, in the interest of gaining 
knowledge on parachute inflation, a method of determining a more exact value of drag area may be pursued. Such a 
pursuit may be valuable in that a more accurate formulation between drag area and riser tension, with values 
measured during testing, may be used to determine important parachute parameters, such as those characterizing 
inflation, required to model performance. 

II. Common Method Relation 
 The relation that is commonly used to determine the drag area profile is based on the approximating 

assumption that the riser tension is equal to the parachute drag force -- PT DF =  -- and substituting TF for PD in 

qSCD DP ⋅=  assumption resulting in the following relation. 

 
q

FSC T
D =  (1) 

The riser tension, TF , is measured by various methods, including by means of a Tension Measurement System 
(TMS), at one or more locations in the connection between the parachute and the payload. The dynamic pressure q  
is measured at the payload location using a pitot tube.   

III. Refined Method Relation 
The parachute – payload system can is described by two coupled equations of motion, one for the payload and 

one for the parachute. These equations are as follows: 

 TF  (2a) 

 [ ] γsin)( vvTvv WDFvm
dt
d

−+=  (2b) 

 A higher fidelity relation between the drag area and the measured riser tension is obtained, without any 
assumptions, from Eq. (2a). If riser tension is isolated in Eq. (2a), the following equation is obtained. 

 γsin)( PpAppApT WvmammDF −−+−= &   (3) 

 
Substituting qSCD ⋅  for PD  and solving for SCD  the actual relationship between parachute drag area and riser 
tension is 
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All of the values on the right side of Eq. (4) are measured directly in a test except the added mass and the time 
rate of change of the added mass, Am  and Am&  respectively. The added mass, Am , appearing in Eqs. (2) – (4) is the 
sum of the included mass, which is the mass of air captured inside the canopy, and the apparent mass, which 
accounts for the force on the parachute due to the change in momentum of the fluid caused by the motion of the 
parachute. Some formulations treat the apparent mass and the included mass separately, but here these quantities are 
treated together as aIA mmm += 1 where the first term in the sum is the included mass –  

 VmI ρ=  (5) 

and the second term is the apparent mass. 

IV. Determining Apparent Mass 
 

 The determination of the apparent mass component of the added mass is a more complicated process. There are 
two general classes of methods of approximating this value. The methods of the first class relate the apparent mass 
to a non-dimensional coefficient, usually termed the apparent mass coefficient, and the geometry of the body in the 
fluid; occasionally, the volume of the body is considered specifically important as opposed to the general geometry 
of the body and its relationship to the flow, however Ref. 2 suggests that this is coincidental. The methods of the 
second class relate the apparent mass to the potential flow around the body and the geometry of the body.   
 Here, the methods of the second class are used as described in Ref. 2 using the primary formulations of Refs. 4 
and 5. A summary of the steps required to formulate the apparent mass expression using the second method are as 
follows; a more complete review of the steps appears in the appendix. First, the kinetic energy of the flow around 
the ellipsoid is expressed in terms of the potential flow velocities around an ellipsoid approximating the 
instantaneous shape of the pressurized region of the inflating canopy. Second, the apparent mass is factored from 
this expression and expressed in terms of the velocity potential. Third, the potential function is determined, where 
this potential function is solely dependent on the geometry of the body3-4 – in this case the ellipsoid approximating 
the instantaneous shape of the inflating canopy – and the body free-stream velocity. This will in turn give the 
apparent mass in terms of the body geometry. The time rate of change of the apparent mass is also expressible in 
terms of the body geometry. Both of these values can then be substituted in Eqs. (2), (3), and (4). 

 The result of these steps is an expression for the apparent mass associated with the motion of a parachute 
moving solely along its body fixed  or  axis which is† 

 abcA π
α

ρα
3
4

2 0

0
33 −

= , (6) 

where a ,b , and c  are the ellipsoid dimensions in the body fixed 1x or x , 2x or y , and 3x or z axis respectively 

and 0α  is a term appearing from the solution of the potential flow as described in the appendix. With the 
determination of the apparent mass as given by Eq. (6), the added mass can be expressed as 
 

 abcabcmA πρπ
α

ρα
3
4

3
4

2 0

0 +
−

= , (7)   

where the first term in the sum is the apparent mass and the second term is the included mass.  

                                                           
 
† The derivation of this expression is based on Refs. 2-5. The steps -- taken from these references -- required in 
determining this expression are summarized in the appendix. 
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V. Measurements from Drop Test Videos 
 
The parachute used to compare the two methods of determining the drag area history was a 116 ft D0 quarter-

spherical ringsail with two stage reefing weighing 185 lb. Drop test instrument data and video was available for this 
parachute as part of development testing. The first data point collected for the purpose of this paper occurred  

immediately after 
the beginning of 
first stage 
inflation at an 
altitude of 5500.5 
ft above mean sea 
level at and at a 
dynamic pressure 
of 42.25 lb/ft2. 
Plots of test 
determined values 
used in Eq. (4) – 
riser tension, 
velocity, flight 
path angle, and 
dynamic pressure 
are presented in 
Figs. 1 – 4. 
 Measurements 
of the radial 
dimensions of an 
ellipsoid -- 
symmetric about 
the minor axis -- 
approximating the 

instantaneous 
shape of the 

pressurized region of the canopy were taken from still frames extracted from the available video. Ninety-six frames, 
the first of which occurred immediately after the start of inflation and the last of which occurred at full open, and 
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Figure 2. Velocity measured during test.  This curve
presents the wind corrected velocities measured during
the test. The velocity magnitude is used in Eq. (4). 
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Figure 3. Flight path angle. This curve presents the
flight path angle as calculated from wind corrected
horizontal and vertical velocities. 
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Figure 1. Riser tension measured during test.  This figure presents the measured tension 
from the start of inflation through full open. This is the  FT  used in Eqs. (1) and (4).  
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intermediate frames 
-- at 0.33 sec 
intervals between 
inflation start and 
disreef to full open 
and at 0.11 sec 
intervals between 
disreef to full open 
and full open -- were 
examined to obtain 
the dimensions.  

Figure 5 presents 
a sample frame 
indicating the 
dimensions of the 
ellipsoid radii, where 
c is the ellipsoid 
radial dimension 
coincident with the 
body fixed 3x  or z
axis which is along 
the parachute axis of 
symmetry, and a and 
be are the other two 
dimensions which 
are assumed to be 
equal to each other. 
These ellipsoid 
radial dimensions 
are presented in Fig. 
6. The computed 
volume of the 
ellipsoid is also 
presented in Fig. 6, 
where the volume is

.  
This time history 

of the ellipsoid radii 
and the dependent 
volume depicted in 
this figure clearly 
represents the 
growth of the 
canopy between start 
of inflation and full 
open – the radius, c, 
represents the 
growth less 
distinctively than the  

abcV π
3
4

=

 
Figure 5. Sample frame extracted from video showing measurements.  
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Figure 4. Dynamic pressure. This curve presents the dynamic pressure measured during 
the test. It is used in Eqs. (1) and (4). 
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radii a and b and the volume, especially at disreef to the second reefing stage, but taken together with a, b, c, and the 

volume, the reefing stages can be 
discerned.  

The value of  at each data 
point was calculated numerically 
from the radii of the ellipsoid as 
given by Eq. (30); these values are 
presented in Fig. 7. The radii and 

values at each data point, along 
with velocity and density data 
measured by test instruments, when 
inputted in Eq. (6) give the apparent 
mass of the parachute as 
approximated by the ellipsoid at 
each point. The added mass, the 
sum of the apparent mass and 
included mass – as given by Eq. (5), 
was then calculated for each data 
point. The time history of the added 
mass and the apparent mass 
between inflation start and full open 
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Figure 6. Ellipsoid radial dimension measurements and ellipsoid volume as a function of time between
inflation start and full open.  The curve labeled Ellipsoid Radius a, b is the major axes radial dimension. a is
along the x axis, b is along the y axis and c is along the z axis. Since the canopy is symmetrical about the z axis, a
and be are equal.  
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is presented in Fig. 7. 

This figure, as does Fig. 6, depicts clearly the growth of the canopy during the first reefing stage beginning at 
44.5 s, disreef at 52 s, the 
moderately increased growth 
rate during the second 
reefing stage until disreef to 
full open, the drastically 
increased growth rate during 
inflation to full open at 60.5 
s, and the subsequent 
constant value of the 
apparent and added mass – 
all as would be expected. 
 In addition to the values 
presented in Figs. 6 – 8, the 
other component of Eq. (4)  
that is not directly measured 
by test instruments necessary 
to compute the drag area 
growth during inflation is the 
change in added mass with 

respect to time, . This 
derivative is represented by 
the following equation: 
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Figure 8. Apparent mass and added mass between the start of inflation and full open.. Disreef to full open
occurs at 60.65 s. Full open occurs at 62.45 s. 
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Figure 9. Added mass time derivative from inflation start through full open
inflation. The curve labeled madotfd is a finite difference of the added mass
whereas the curve labeled madotEq. (11) is calculated by Eq. (11) where only the
ellipsoid dimensions and L are finite differenced. 
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 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
= abcabc

dt
dmA πρπ

α
ρα

3
4

3
4

2 0

0&  (8) 

where the first element of the sum is the apparent mass and the second is the included mass. If the density is 
assumed to be constant, Eq. (8) reduces to  

 ⎟
⎠
⎞

⎜
⎝
⎛

−
⋅=

abcL
abc

dt
dmA 2

2
3
4 πρ&  (9) 

where L is equal to the elliptic integral of Eq. (30) or, 

 
abc

L 0α
=  (10) 

Eq. (9) is also expressible as  
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Figure 10. Added mass time derivative after disreef from second stage. The curve labeled madotfd is a finite 
difference of the added mass whereas the curve labeled madotEq. (11) is calculated by Eq. (11) where the ellipsoid 
dimensions and L are finite differenced. 
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 (11) 

-- a form of the equation where the individual geometry related terms can be finite differenced separately. 
The time history of Am&  computed by two different methods— one by taking the average of the forward and 

backward finite difference of the added mass at each data point and another by Eq. (11) where the finite difference 
of a, b, c, and L are done separately as they appear in the equation -- is presented in Figs. 9 and 10. Both time 
histories show that the change in added mass is nearly constant during the first and second reefing stage, and that 
there is an increase in the rate that added mass changes after disreef to full open and a fluctuation centered on 0 
slug/s after full open is reached. 

Figures 8 - 10 indicate that the added mass and added mass change rate values are small during the first and 
second reefing stages compared to the period of inflation to full open. This is a direct consequence of the much 
larger dimensions of the canopy during the growth to the last stage resulting in higher values at that stage. The 
higher dynamic pressure in the first stage when the canopy is smaller also results in smaller added mass and added 
mass change rate during the first stage relative to the last stage inflation. 
 

VI. Comparison of Effects of Approximate Relationship vs. Refined Relationship 
The values that depend on the dimensions of the approximating ellipsoid, having been determined by Eqs. (7) and 

(11), can be inputted into Eq. (4) and the drag area values at each point can be determined. Figures 11 – 14 present 

the drag are time history given by Eq. (4) based on the two computations of  as well as the drag area given by 
Eq. (1).  

Am&
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Figure 11. Drag area from the start of inflation through full open.. 
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The value of the drag area as represented by these figures reflects the values of added mass in that the growth in 
drag area is similar to the growth in the mass values.  Figures 12 and 13 indicate that the drag area values calculated 
by Eq. (1) and Eq. (4) are equivalent during the first reefing stage and nearly equivalent during the second reefing 

stage, whereas Fig. 14 suggests that the drag area values calculated by the two equations are significantly different 
during the period of canopy growth from disreef from the second stage to full open. As one would expect from an 
examination of Eqs. (1) and (4) drag area values established by equation (4) reach a higher maximum with a 
significantly higher growth rate as indicated in Fig. 14. This figure also indicates that the drag area calculated by Eq. 
(4) decreases to the same value as the drag area calculated by Eq. (1) for a period of 0.8 s beginning at 63 s. This 
behavior is due to the fact that beginning at 63 s the time derivative of added mass as well as acceleration is zero 
during this period. 

VII. Conclusion 
Based on the above results, there is no appreciable difference in the drag area growth characteristics of this class 

of parachute during portions of inflation where the size of the pressurized region of the canopy is relatively small – 
in the initial stages of inflation. However, there is evidence (Fig. 14) that the drag area is significantly larger when it 
is formulated as Eq. (4) versus Eq. (1), as one would expect, in the latter part of inflation when the size of the 
canopy reaches becomes relatively large causing values of added mass and change in added mass rate with respect 
to become appreciably large in turn influencing the drag area value. 

The last observation in the previous section – the behavior of the drag area at points when Am&  and acceleration 
are zero – is an illustration of the limitation of the approximation of the value of drag area given by Eq. (1) when the 
parachute is inflating and when it is fully inflated during periods of acceleration or deceleration due to fluctuations 
in elastic forces in the riser.  

The difference in the two drag areas suggests that inputs to parachute performance computer models of 
representative drag area profiles as polynomial expressions of time and filling time based on drag area profiles 
determined by Eq. (1) as opposed to Eq. (4) will result in simulations based on Eq. (1) predicting lower opening 
forces than simulations based on Eq. (4) with peak forces possibly occurring at different points during inflation. In 
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Figure 14.  Drag area time history during the second reefing stage. 
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addition the type of polynomial expression that could describe the drag area growth given by Eq. (1) -- during the 
full open stage of inflation -- could not describe the drag area growth as given by Eq. (4). For example 
 

  (12) 

 
which is a modification of Equation 7-28 from Ref. 6, where t refers to time and the subscripts FO and IS refer to 
full open and inflation start, respectively, could approximate the drag area growth during the third stage of inflation 
very well by varying the exponent, N. However, this expression could not approximate the drag area growth of Eq. 
(4) because of the overshoot of the full open value and the subsequent return to the full open value at 63 s. 
 At this point the limitations of the analysis presented in this paper should be mentioned. First, an examination of 
Figs. 2 -3 indicates that during the third stage of inflation that the velocity of the parachute is not aligned with its 
axis of symmetry and that the velocity is changing with time. This requires that additional components of the 
apparent mass tensor be included in formulation of the drag area growth. It also suggests that although a deviation is 
to be expected, the deviation in values of the drag area calculated using Eq. (1) and values calculated by Eq. (4) may 
not be as high as indicated by Fig. 14. 
 A logical extension of the work of this paper would be to formulate the drag area growth taking into account 
apparent mass terms resulting from all components of velocities and rotations for an approximating ellipsoid that is 
symmetrical about all three of its body fixed planes.     

 

Appendix 
This appendix provides a brief discussion of apparent mass and its derivation as used in this paper. 

A. The kinetic energy of the fluid and the apparent mass2, 4, 5. 
 The kinetic energy of the fluid flow around the ellipsoid representing the inflating parachute at any time can be 
expressed as 

 ∫=
V

ii dVuuT ρ
2
1

  (13) 

where i=1, 2, 3 indicate the three translation velocities, iiuu is a shorthand notation meaning  

 332211 uuuuuu ++ , (14) 

and, V, is the entire domain of the fluid in the continuous region between the surface of the body and the locus of 
points where the fluid velocity is equal to the freestream velocity. Eq. (13) may be written as 

 2

2
1 dVU

U
u

U
u

T i

V

i∫= ρ  (15) 

because the change in fluid velocity is proportional to the freestream velocity or the body velocity, i.e. iu changes 

by the same proportion that U changes. When the velocity of the body changes there is an attendant change in the 
kinetic energy of the fluid which is expressed by 

 
dt
dTFU =−  (16) 
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where F is the force felt by the body, or the force on the body required to change the momentum of the fluid. The 
above expression is equivalent to 

 
dt

dUIF ρ−=  (17) 

if 

 dV
U
u

U
u

I i

V

i∫=  (18) 

and I remains constant because the flow pattern does not change. 
Because the above equation is analogous to maF = , the force felt by the body when changing the momentum 

of the fluid, the product Iρ is considered the apparent mass.  
In the case of solid bodies moving through a fluid this expression may be called the added mass. However, in the 

case of parachutes, which are not solid bodies and capture air inside the canopy, the included mass is added to the 
apparent mass and this sum is called the added mass as stated previously.  

The above formulations are suitable for simple rectilinear motion where only one direction is considered and a 
force applied to the body in one direction results in acceleration only in the same direction. In the general case, a 
force on the body may result in acceleration in another direction; there will be an induced acceleration in three 
translation coordinates and three rotation coordinates. For the apparent mass formulation to account for these 
induced accelerations, the apparent mass must be a matrix as in the following 

 jiji AMF −= § (19) 

where iF  is a force on the body in the ith direction due to the change in the kinetic energy of the fluid in the jth 

direction and jA  -- with j=1, 2, 3 representing the three translation accelerations and with j=4, 5, 6 representing the 

three rotational accelerations – is the induced acceleration in the six possible induced acceleration directions. ijM  is 
the apparent mass matrix. If the induced accelerations are superposable, then the total induced velocity is the sum of 
the individual components of velocity of the fluid caused by each component of the body velocity. If the individual 
components of fluid flow are superposable, then the induced velocities due to motion of the body in each of its 
components can be summed as 

 jiji Uuu =  (20) 

where jU  is the body velocity, iju  is the fluid velocity in the i component caused by the body velocity in the j 
component. A substitution of Eq. (19) into Eq. (12) allows the kinetic energy of the fluid to be expressed as 

 kjjk UUAT
2
1

=  (21) 

where 

                                                           
 
§ See Ref. 5 which also indicates the moment of inertia tensor is added to the added to the apparent mass tensor of 
Eq. (19) to get the complete set of forces on the body.  
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 ∫=
V

ikijjk dVuuA ρ  (22) 

which is equal to the ijM  of Eq. (19).  

B. The apparent mass in terms of the velocity potential2, 5 
 With substitution of 

 
i

j
ij x

u
∂

∂
=

φ
 (23) 

and 

 
i

k
ik x

u
∂
∂

=
φ

 (24) 

into Eq. (22) and application of Green’s Theorem as done in Ref. 5 allows transformation of the volume integral of 
Eq. (22) into the following surface integral 

 ∫ ∂
∂

=
S

k
jjk dS

n
A

φ
φρ  (25) 

Solution of six velocity potentials, one due to motion of the body in each of its coordinates, allows the evaluation of 
each of the thirty-six components of the apparent mass matrix of Eq. (19).  

C. Solution of the required velocity potentials4 
Of the thirty-six elements of the apparent mass matrix, only the six diagonal elements need to be calculated for a 

body that is symmetrical about all three planes – i.e. the body is symmetrical about the , ,  
planes. As a further simplification, if the body is moving only in one direction which is parallel to one of its axes, 
then the only the apparent mass component that needs to be calculated is the one related to the velocity potential of 
the fluid velocity caused by the body motion in that direction. In the case of a parachute motion with a body 

coordinate system in which the  axis coincides with the parachute axis of symmetry, with a velocity only in its 

 axis, the only element of the apparent mass tensor that needs to be calculated is 

 S
n

A
S

∂
∂

= ∫ 3
333

φ
φρ  (26) 

If the equation that describes the surface of the ellipsoid is 

 12

2
3

2

2
2

2

2
1 =++

c
x

b
x

a
x

 (27) 

then the velocity potential is given by  

01 =x 02 =x 03 =x

3x

3x
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 ( ) ( )( )( )∫
∞

++++
=

λ λλλλ

λφ
222233

cbac
dCx  (28) 

where  

 3
02

UabcC
α−

=  (29) 

where 

 ( ) ( )( )( )∫
∞

++++
=

0
22220

λλλλ

λα
cbac

dabc  (30) 

So 

 ( ) ( )( )( )∫
∞

++++−
=

λ λλλλ

λ
α

φ
222233

0
3 2 cbac

dxUabc
 (31) 

 
0

330
3 2 α

αφ
−

=
xU

 (32) 

Substituting Eq. (32) into Eq. (26) and applying the boundary condition,
3

cos3 xU
n

θφ
=

∂
∂

, results in 

 ∫∫ ∂
−

=∂⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
S

xx
S

Sx
U

SU
xU

A
33

cos
2

cos
2 3

0

2
30

3
0

330
33 θ

α
ρα

θ
α

α
ρ  (33) 

The integral ∫ ∂
S

x Sx
3

cos3 θ is a projection of an infinitesimal area of the ellipsoid surface onto the 03 =x  plane, 

making the integral equal to the volume of the ellipsoid, such that 

 abcA π
α

ρα
3
4

2 0

0
33 −

=  (34) 

where 0α  is given by Eq. 30. This value is the apparent mass of a symmetrical parachute moving along its axis of 
symmetry. 
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