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Axisymmetric Parachute Shape Study

Vladimir S. Drozd1

Airborne Systems North America, Santa Ana, CA, 92704, United States

Parachute inflated shape is one of the main parameters that drives parachute
performance in steady descent. This paper looks at axisymmetric parachute shape
formation, particularly the relationship between parachute constructed geometry, number
of gores, gore shape, pressure distribution and inflated parachute shape. Stresses in a
parachute structure are discussed in relation to parachute inflated shape. Analytical
estimates derived from one dimensional parachute model are extended by a finite element
analyses performed with LS DYNA software.

Nomenclature

0A - canopy reference area, nominal

N - number of canopy gores,

mS - length of the canopy radial from an apex to a skirt

mSSs /= - dimensionless distance from apex to a current point along the radial

mSsYsXyx /)(),(, = - dimensionless yx, coordinate of a radial point

n
r

- unit vector in plane of the radial and normal to the radial
τ
r

- unit vector tangent to the radial
a2 - distance between the radials on inflated canopy

r - fabric strip arch local radius
R - distance from the canopy centerline to the radial along the normal n

r
to the radial

γ - fabric strip arch half angle

l - inflated gore half length ( gore arch half length )
α - half angle between the adjacent radial normal vectors
ϕ - angle between a tangent to the radial and X-axes

F - confluence force
q - dynamic pressure

qspp /)(= - dimensionless pressure distribution along radial

Cp - pressure coefficient,

Cd - drag coefficient
Cc - carrying capacity coefficient
T - tensile force in a radial,

)(sFt - tangential distributed force component along the line,

)(sFn - normal distributed force component along the line,

fT - distributed tensile force in a fabric strip,

L - lines length

Dimensionless parameters are used as follows:
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2
mSqTT ⋅⋅=

mnn SqFF ⋅⋅=

mtt SqFF ⋅⋅=

mSss ⋅=
The dashes above the dimensionless values are omitted in a text below
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Introduction
Demanding and changing performance requirements to modern parachute systems keep up continual interest to

new parachute designs and improvements of the existing systems. The broad spread of today’s requirements vary
from a single use cargo delivery system where cost is likely a design driving factor to a space recovery systems
where chute performance per unit of system mass is often a major efficiency criteria.

Industry advances in textile materials and new parachute assembly methods enhanced with modern
simulation techniques open additional opportunities in satisfying today’s rigorous requirements, often allowing
engineers to take another look at already existing concepts and consider a new ones.

Despite seemingly being around forever and studied thoroughly circular parachutes are not an exclusion, and
on the contrary prove time over time their necessity and superiority for many existing and new applications.

Mostly experimental approach of early days to a parachute design provides engineers with valuable factual
data of parachute performance. Today those data can be complimented by advancements in parachute simulation
methods. Achievements in a finite element analyses (FEA) and fluid structure interaction (FSI ) allow for
simulation of the real life structures with acceptable accuracy and more and more realistic outcomes, parachutes not
being an exclusion. Quickly growing computing power makes simulation results also feasible within a reasonable
computing time.

FSI methods by their definition involve coupling of fluid and structure motions and therefore represent the
most advanced and adequately complex approach to a parachute behavior analyses.

On the other hand FEA method thoroughly considers structural part of parachute behavior, provided
distributed aerodynamic loads applied to a parachute surface are known. In some cases those loads may be
available from experiments or estimated separately, which allows structural analyses of parachute to be complete.

As universal computational methods FSI and FEA methods are applicable to any type of a parachute structure
provided parachute geometry is known.

Being very powerful in their ability to analyze local effects ( like stress concentrations for complicated shapes
for example ) on another hand they do not provide that analyses convenience compared to the cases when system
behavior can be described and analyzed through analytical relationships between major design defining parameters.

Fortunately a circular parachute has some specific construction features that allowed researchers to come up
with a relatively simple and meanwhile productive parachute structural model.

Circular parachute canopy structure consist of radials forming vertical wire frame, and a fabric segments filling
space between the radials, fig. 1 ( A horizontal circumferential reinforcing is present quite often as well ). This
schematic of a circular parachute closely matches the pathway the loads are distributed in a canopy structure and
transferred to the confluence point.

Due to a fabric curvature a distributed pressure load )(sp normal to the canopy surface get transformed into a

tensile load fT in a fabric. Tensile loads in a fabric in turn get transferred as a distributed loads to the radials.

Eventually radials collect distributed load and transfer it to the lines.
Since a radial is a linear flexible element the radial shape and a tension T in a radial can be described by

flexible line equations:

)(/ sFtdsdT −= ( 1 )

TsFndsd /)(/ =ϕ ( 2 )

)cos(/ ϕ=dsdx ( 3 )

)sin(/ ϕ=dsdy ( 4 )

Where
T - tensile force in a radial,
s - linear coordinate along the radial
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)(sFt - tangential distributed force component along the radial,

)(sFn - normal distributed force component along the radial,

φ - angle between a radial curve tangent and X-axis ,
yx, - rectangular coordinates of the radial point

This approach has been used successfully to simplify the case and produce a model that adequately describes a
static structural loading of the circular parachute in many important cases. The concepts of the model have been
implemented in CANO and later in CALA codes for a circular parachute structural analyses [ 1 ].

Although aimed primarily to determine structural loads in a canopy for known constructed geometry and a
pressure distribution, the developed parachute model and corresponding equations provide a valuable tool for a
circular parachute shape study.

Canopy loading
Major assumptions of the model deal with the question of how the load comes from a canopy fabric to the

radials. It is assumed that fabric itself is a one dimensional structure consisting of a set of independent
circumferential elements ( ribbon parachute is a good example ). Actual solid cloth parachute falls into that
category when radial strains ( stresses ) in a fabric are negligible, compared to the circumferential ones.

Since pressure along the fabric strip element is considered constant, the fabric strip takes a shape of a circle arch
of angle γ⋅2 between two attachment points to the adjacent radials.

Due to an assumed absence of structural interference between fabric strips the value of tensile load fT in

them are statically determined when pressure )(sP and the fabric strip radius of curvature r are known.

In general case a radial is not perpendicular to the plane of a fabric strip, therefore a tensile force fT
r

applied

from a fabric strip to a radial may have both along the radial component )(sFt and a normal to the radial

component with projection )(sFn in plane of the radial.

These components may be approximated by the following dimensionless expressions :

γ
αγπ

sin

)sin(
)sin(2)(

−
⋅⋅⋅⋅=

N
xpsFn ( 5 )

α
ϕ

γ
αγπ

cos

cos

sin

)cos(
)(sin2)( 2 ⋅

−
⋅⋅⋅−=

N
xpsFt ( 6 )

Equilibrium equations ( 1-2 ) and geometrical relationships ( 3 - 4 ) form enclosed system of differential
equations for four unknown functions )(),(),(),( ssTsysx ϕ and known boundary conditions. With XY reference

system origin being at canopy apex the boundary conditions are:
,0)0( ==sϕ and ( 7 )

ms ϕϕ == )0.1( ( 8 )

where mϕ is the radial angle at the point of line attachment.

When right sides of the equation (1-2) are known the equations can be integrated numerically. However
pressure distribution along the radial is not known in advance ( coupling problem, mentioned before ), what makes
the case open.

Nevertheless there is still a certain reason in studying solutions of equations ( 1- 4 ). Available experimental
data of pressure distribution around the canopies ( including various shaped canopies and solid models ) give some
idea of pressure distribution along the radial and a range of pressure variation. Given that it is possible to run some
parametric studies without knowing the exact pressure distribution.

Since forces developed by a parachute depend in part on its inflated shape, and mainly on its projected area, it
seems to be important to keep a projected area at its maximum for a given constructed dimensions. For a given
constructed radial length only a gore width distribution differ one solid cloth canopy design from another ( provided
fabric permeability and lines length remains the same for all designs ).



American Institute of Aeronautics and Astronautics
5

Historically canopy shape evolved from a flat circular to a conical, and then to a more complicated quarter
spherical and extended skirt designs. That evolution resulted in a canopy gore width decrease compared to a flat
circular gore. Fig.2 shows gore material distribution in each of them for a 30 gore canopy. Since flat circular canopy
has the widest gore does it also produce the maximum possible inflated diameter for a given constructed diameter?
Is it possible to increase a canopy inflated diameter by adding more material into the gore? In general, how does a
material distribution in a gore control a canopy inflated shape?

Some observations about the canopy shape can be made based on the structure of the equations describing a radial
loading .

Free shaped (pressure shaped) parachutes
Figure 1 shows canopy schematic and the components )(sFn , )(sFt of the distributed load applied to the

radial. Beside a pressure function both of these components (5-6) contains two angles:α and γ . Angle α⋅2 – is

an angle between the normals of the adjacent radials . It is determined by number of the gores in a canopy and by a
position along the radial. Thus angle α describes a radial geometry and can be expressed as

))sin()(arcsin(sin ϕ
π

α ⋅=
N

( 9 )

Angle α varies along the radial and has its maximum value of N/πα = at the maximum inflated canopy

diameter ( 2/πϕ = ) For a typical 30 gore canopy it is in a range of 060 ≤≤α .

On another hand fabric strip arch angle γ indicate a gore material fullness at a particular point along the radial

which may be characterized by a ratio of a fabric strip arch length l over the distance a between the radials at the
point of consideration:

γγ sin// =al ( 10 )

Theoretically a range of possible angles γ may vary from 0 ( no fullness in a canopy ) to a 2/παγ =− when

gore has maximum fullness.

This particular case is a subject of interest. In this case as it seen from (5-6), 0)( =sFt
Physically it means that tensile force in a fabric strip lies in plane of the radial and is perpendicular to the radial,
thus not having a component in a direction along the radial. As a result a tensile force T in a radial remains constant
all the way along the radial which formally results from eq.1.
It is reasonable to expect a small variation of tensile radial force for the cases when angle αγ >> still.

On the other hand for αγ >> normal to the radial force component )(sFn does not change a lot as well. That

means a radial shape is not going to change substantially with angle γ variation provided angle γ is high. Since

angle γ is a measure of a gore fullness, it is expected that canopies with a lot of gore fullness all have a similar

radial shapes.
Based on the features of available fullness it is convenient to call these class of canopies a free shaped

parachutes. For these parachutes their shape is controlled by a pressure distribution ( or rather a presence of
pressure difference at the canopy surface, since shape itself is almost independent of a pressure distribution itself )

Shaped parachutes
Free shape parachutes are those where αγ >> at any point along the radial. Opposite to this case is the case

when αγ = . That makes

,0=Fn and 0/ =dsdϕ ( 11 )

In this case angle ϕ remains constant and the following condition must be met:

)sin()sin()sin( ϕπγ ⋅=
N

( 12 )

Apparently, canopies with constant ϕ along a certain part of the radial resemble the conical surface shape at

that area. The shape of the conical part of the canopy does not depend on a pressure distribution along the conical
part of the canopy, but rather is determined by a geometry of the gore.

For a small ϕ angle γ is also small and may be approximated as
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N

πϕγ ⋅= ( 13)

Thus knowing ( or assigning desirable ) angle ϕ , a variety of conical canopies with different cone angles can be

generated. Knowing angle ϕ , and the number of gores N, all other canopy parameters are determined for the area

where const=ϕ

)sin(
N

xa
π

⋅= (14 )

)sin(
)sin(

γ
γπ

⋅⋅=
N

xl (15 )

Angle ϕ can not remain constant all the way along a radial since at the line attachment point it must be higher

than 90 degrees to satisfy boundary conditions. Consequently a transition area from a conical to different shape is
required. Since in this area angle ϕ must change substantially, angle γ deviates from angle α to produce a

required Fn .
Theoretically the conically shaped parts of the canopy may exist at any ϕ , even when ϕ is greater than 90

degrees ( at skirt area ) provided there is a positive pressure difference across the canopy shell in this area. In this
case a general equation ( 12 ) must be used to obtain angle gamma for this part of the canopy.

When “ conical “ load conditions are met at the cylindrical part of the canopy it experiences hoop stresses only.
Cylindrical part of the canopy has another interesting feature. The angle 2/πϕ = for a cylindrical part of the

canopy ( maximum diameter of the inflated canopy area ). Therefore in accordance with eg. (1,6) tensile force in a
radial must remain unchanged along the radial at that areas of the canopy regardless of gore fullness.

Thus there are two ultimate cases of canopy shapes – free shaped, or pressure shaped parachutes, and a shaped
parachutes, where canopy shape in certain areas is determined purely by a gore geometry. In between those
ultimate cases a general expression ( 5-6 ) must be used when integrating system of equation ( 1-4 ) for angle ϕ .

Tension in a canopy fabric.
Tension in a fabric strip is given by the expression

)sin(

)sin(
)sin(/

γ

π

γ NpxpaprT ⋅=⋅=⋅= ( 16 )

It become evident again the importance of angle γ ( or fullness in a canopy gore ). The more fullness in a gore

is, the less is the tension in a canopy fabric. In a conical canopies circumferential stresses therefore are higher than
stresses in a free shaped canopies.

Pressure distribution approximation
Since governing equations are not going to be solved for the exact pressure distributions, some reasonable

pressure distribution approximations are used. Linear pressure distribution along the radial is perhaps the simplest
one to consider

qCpSksmqSsqkmqsP mm ⋅=+=⋅⋅+⋅= )/(/)( ( 17 )

The first constant term “m” is used to characterize say “average” pressure acting on a canopy surface, or pressure
at some characteristic point along the radial, say at canopy apex or close to it. The second term “k” describes
pressure variation along the radial.

The following range of pressure parameters was considered:
m = { 0.5 - 1.4 }, k = { 0.0 – 0.5 } ( 18 )

Gore geometry parameters
As it was discussed earlier a pressure distribution is not the only parameter that controls the solution of

governing equations describing canopy shape. Expressions (5-6) for distributed forces contain an angle γ - a

parameter that characterizes a gore fullness distribution along the radial. It is convenient to use this parameter
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instead of a gore width. When γ >> α then canopy has a lot of gore fullness. When 0~αγ − then canopy does

not have any fullness in a gore. These special cases were touched above giving an idea of canopy shape for them.
The intermediate cases require solution of the governing equations.

As a first step a system of equations was integrated for a range of angles γ and linear pressure distribution. A

relative lines length ratio 2/ =mSL was used as a typical value. Fig.3 shows the respective computed radial

shapes for a range of angles γ , while gore width distribution along the radial for various angles γ is shown in fig.

4. As it is seen from fig.3 a maximum gore fullness provides maximum canopy inflated diameter. A substantial
decrease in a gore fullness ( decrease in angle γ from 90 degrees to ~ 30 degrees ) does not lead to a drastic

decrease in an inflated diameter, but substantially decreases a gore width.
Fig.5 and 6 show tension distribution in the radial itself and in a fabric material respectively. It may be seen that

the radial’s tension remains the same for a wide gore, but starts changing when gore fullness drops. The radial
tension change is not pronounced at the skirt of the canopy area, where canopy has close to a cylindrical shape, as it
was discussed earlier.

Similarly to a parachute drag coefficient Cd a canopy efficiency can be estimated by a carrying capacity
coefficient Cc defined as AqFCc ⋅= / . Carrying capacity coefficient is not a truly drag coefficient since it is

based on a prescribed pressure distribution, but would converge to a drag coefficient for a correct pressure
distribution. Fig. 7 presents change in the Cc coefficient with the angle γ for two considered pressure

distributions - constant ( 0,1 == km ) and a quasi linear pressure distribution shown in fig. 3. The canopy
inflated radius is also plotted in fig.7 for both pressure distributions. Both sets of curves help to explain the tend in
changes of the carrying capacity curve.

The canopy inflated dimension very lightly depends on the pressure distribution pattern. The increase in the
inflated canopy radius varies from 4 to 2 % with pressure change, which tells that canopy inflated diameter almost
insensitive to a pressure distribution pattern.

An increase in a canopy inflated radius is only ~5% when angle γ changes from 30 to 90 degrees. This leads to

a certain observation about inflated parachute canopy shapes. Since angle γ determines canopy gore width

distribution along the radial, all canopies having their gore width distribution curve above the “ border” line curve

for 030=γ must have their shapes enclosed between blue and green lines in fig.3 In this respect, their inflated

radial shape is not very sensitive to the gore width distribution. Thus all the canopies satisfying that condition must
look very alike in terms of their radial shape when inflated. Charts fig.7 also show that canopy inflated radius
decreases sharply at small angles γ .

As it may be seen the carrying capacity coefficient Cc reaches its maximum within a certain range of angles
γ . At high angles γ the coefficient Cc goes down due to an increase in a gore fabric area. This increase in a gore

fabric area is not supported though by the adequate increase in a canopy projected area.
At low angles γ canopy inflated radius drops sharply thus driving down canopy carrying capacity.

A comparison of gore width distributions for various but constant angles γ in fig.4 shows that none of them

matches a flat circular canopy gore width distribution. A flat circular gore width distribution is closely approximated
by angle γ ~30 degrees at small distance s along the radial (apex area), but has a lot of fullness at the skirt area.

Much better match is achieved with use of a variable angle γ , as shown in fig.8. Despite an increase in the angle γ
at the skirt, an extra material at the skirt area resulted in a decrease of the carrying capacity coefficient Cc from
0.63 to a 0.60.

FEA results
One-dimensional parachute model discussed above emphasized important relationships and geometry

parameters responsible for canopy shape formation. Some important canopy shapes have been discussed.
More detailed canopy shape and fabric stress analyses requires two dimensional fabric model. It was done

using a FEA simulation for a several gore shapes using a commercial LSDYNA software[5].

Rectangular gore.
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Parachute design that utilizes a simple solid cloth rectangular strip of fabric as a gore was studied during a low
cost parachute design project. Being unique in a construction itself this design is also a good example to be used in
a simulation.

As an example the simulation was done for the canopy having a radial of 5.5 m long and 30 gores.
A gore width “w” was considered as a variable parameter, and a series of simulations was performed for each

fixed gore width. Same as before pressure parameters “m” and “k” have been varied within the range m = { 0.5 –
1.4 }, k = { 0 - 0.5 } to simulate various pressure distribution scenarios and their influence on a canopy shape. A
summarized results of the simulations are presented in fig.9 – 11.

As it can be seen from charts fig.9 inflated canopy radial radius stays almost the same when gore width
decreases from its maximum value, and then suddenly begin to decrease when gore width drops below a certain
value. Physically that effect is directly related to the gore fullness decrease with the gore width decrease, Fig.10.
Gore fullness decrease does not influence substantially load )(sFn applied to the radial up to a certain moment, so

as a it does not influence a radial loading, and consequently canopy shape ( radius remains almost unchanged ).
When gore fullness becomes small, then situation sharply getting changed in an area of small fullness. Now with
the width decrease canopy mouth radius decreases proportionally. Comparison of curves for radius change shows
that radius change with pressure change disappears as soon as width dropped below critical value. So canopy
inflated diameter is almost invariant to a pressure distribution change along the surface, ( which also have been
discussed earlier ).

Cc coefficient
The Cc charts presented in Fig. 9. show distinctive maximum at certain gore width. The Cc increase with the

initial gore width decrease is explained by a decrease in a reference area for a Cc calculation, not by an increase in a
confluence force. As it is shown in Fig.11 the actual confluence force F drops with gore width decrease ( canopy
mouth diameter stays the same, but fullness drops, so does the mouth area ). But the actual rate of reference area
decrease is higher than a rate of a force decrease, so a Cc is going up.

On the contrary, the confluence force drop after the bend at w=0.4 is mainly the result of canopy mouth
diameter change. In this area of w<0.4 m a force drops faster than a reference area does.

Fabric stresses.
Fabric stress distribution in a gore for 2 rectangular gore canopy designs are shown fig 22-23 and plotted in chart

Fig. 10. This chart also clearly indicates change in a canopy behavior. Basically circumferential stresses jumped
from one level to another level as soon as gore width value passed through critical region of w=0.4 m. Low stresses
at the right part of the chart represent local stresses in a bulged between the radials fabric. High stresses at the left
part of the chart in turn represent “hoop” stresses in a cylindrical part of the canopy formed when gore width
dropped below critical region.

This last situation has Fn = 0, and therefore 0/ =dsdϕ . So canopy shape in this area takes a cylindrical shape

with virtually no gore fullness ( αγ = condition ) . Circumferential fabric tension in this area may be estimated as

prT ⋅= And for r = 3.6 m , p = 90 N/qs.m, T= 3.6* 90*0.1*2.2*0.0254 =1.83 lb/inch. For comparison LS

Dyna computed circumferential tension is T= 1.94E-6*4E+6*0.1*2.2 = 1.8345 lb/inch

Triangular gore shape.
Triangular gore shapes historically are associated with a flat circular canopy, having triangle angle at apex

N/2 πβ ⋅= . So called conical chutes have that angle N/2 πβ ⋅≤ , with narrower gore. Nothing prevent though

to consider the gore shapes having gore angle larger than N/2 πβ ⋅= , which is, in a way, similar to a rectangular

gore with extra fabric discussed before.
As an example for the FEA a canopy having a radial of 5.5 m long and 30 gores have been considered. In this

case a conical gore shape was simulated. A gore width at apex was fixed to a reasonably small value 0.02 m
convenient for simulation purposes. A gore width “w” at canopy skirt was considered as a variable parameter, and
a series of simulations was performed for each fixed gore width. As before , pressure parameters “m” and “k” have
been varied within the range m = { 0.5 – 1.4 }, k = { 0 - 0.5 } to simulate various pressure distribution scenarios.

A summarized results presented below in charts fig.12 – 15. for m=1, k=0, 0.5
As it can be seen from charts Fig.12 canopy inflated dimension ( characterized by radial radius ) stays almost

unchanged between w= 0.53 -0.6 m, and then slowly decreases when gore width drops. The same results are
presented in Fig. 13 vs cone angle. It is seen that canopy inflated diameter stays practically constant up to cone
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angle 30 degrees, and then start decreasing. Physically that effect is again directly related to the gore fullness
decrease with the gore width decrease. The difference between a rectangular gore and a triangular gore lies is in
what canopy part that fullness becomes close to 1.0 first.

In case of a rectangular gore that happens first in the area of the maximum canopy diameter, and than progresses
up along the radial, see pictures of gore shapes in fig.16-21.

In case of a triangular gore that happens first in an intermediate area ( due to a certain fullness given in the apex
area ) , and than progresses down the gore and up the gore when gore angle decreases ( cone angle increases, in

terms of standard terminology ). In those areas radial takes the shape of a straight line ( a condition of 0=
ds

dϕ

discussed earlier ) . A computed inflated gore shapes and stress distribution in them are presented in fig. 24-28 for
a range of cone angle 0-45 degrees.

It is important to note that up until this, say critical, angle range of ~ 30 degrees is reached, canopy shape (
radial shape ) is the same as the one for a rectangular gore, or any other shaped gore. They all have one thing in
common – they all have sufficient gore fullness and therefore behave identical in terms of canopy shape forming, -
like a free shaped parachutes. From that standpoint a flat circular, and all coned parachutes having cone angle less
than 30 degrees will not look like a cones when inflated, but rather will look like a regular flat circular in terms of
their radials spatial shape. Experimental results on 20 degrees conical canopy testing may be found in [ 2 ]

When gore fullness became small in the case of a rectangular gore, it is immediately influenced canopy mouth
dimension. With the width decrease canopy mouth radius decreased proportionally.

Not the same is in case of the conical chutes. Absence of fullness, or say, fabric deficiency in a gore leads to an
increase of the cone angle.

Same as before, comparison of curves for radius change ( Fig.12-13 ) shows that radius change with pressure
change becomes less noticeable with cone angle increases. So canopy inflated diameter is almost invariant to a
pressure distribution change along the surface, ( which also have been discussed earlier ).

Cc coefficient
The Cc charts presented in Fig. 12-15 show an area of widths (cone angles ) where parachute Cc reaches

maximum and remains almost unchanged. This happens at 28-42 degrees cone angle. Same as it was in the case
with a rectangular gore, the Cc increase with the initial gore width decrease ( cone angle increase ) is explained by
a decrease in a reference area for a Cc calculation, not by an increase in a confluence force. Similar results reported
in [3,4]. Fig.14 shows that the actual confluence force F drops with gore width decrease ( canopy mouth diameter
stays about the same, but fullness drops, so does the mouth area ). But an actual rate of reference area decrease is
higher than a rate of a force decrease, so the Cc is going up.

Fairly flat Cc curve between 28-42 degrees reflects the fact of force decrease due to a proportional mouth
diameter decrease.

Further increase in a cone angle shows drop both in a Cc and a confluence force.
So what cone angle is the optimal one in a canopy design if Cc is constant within a range of angles? Apparently

some other than Cc factors must be taken into account.
Typically chute performance is characterized by a canopy Cc which involves canopy surface area as a

denominator. By default canopy surface area is often associated with a chute total mass. In reality a canopy fabric
mass is about 30% of total chute mass, especially for the systems with long lines and risers. So 10% in surface area
increase will give 10% of fabric mass increase, but only 3-4% of total parachute mass increase. In an extreme case,
when fabric weight is negligible compared to a total parachute mass, we will be actually looking at the force
generated by parachute of the fixed diameter and line lengths. For this reason it is make sense to look at the force a
canopy generates, and use this force as a second criteria. In our case of conical canopy force drops continuously
with a cone angle increase, Fig.15. So for this reason the more efficient chute will be the one with 28-30 degrees
angle since it generates higher force that chute with say 45 degrees angle.

Canopy shape optimization considerations
As it was shown above a rectangular gore shape has a lot of fullness at large gore width, which does not really

contribute to a drag producing. When a gore width decreases and reaches a certain value where the gore fullness
drops substantially, canopy inflated diameter decreases, and performance start suffer. With a rectangular canopy that
fullness drop happens in a lower canopy portion ( skirt area ). The best canopy carting capacity coefficient was
found to be right at that transition zone of gore width or slightly above it. As it was shown a growth of carrying
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capacity coefficient with a gore width decrease is mainly a result of fabric area decrease, without a change in a
radial spatial shape ( canopy shape and inflated canopy diameter ).

This observation suggest a natural approach to parachute efficiency improvement . As a first step gore width at
any point along the radial can be brought down to the point where it will start influence canopy inflated diameter.
With this approach canopy shape will not be influenced, but canopy fabric area will be decreased.

A further fullness elimination in canopy top area theoretically must lead to a conically shaped areas of the
canopy. Conically shaped canopy seems to be attractive to study with an aim to flatten the radial curvature and
decreasing a size of a “vertical canopy wall”, thus potentially opening canopy mouth.

It is important to notice that the above considerations are based on the assumption of the same pressure
distribution for all the shapes considered. Despite it was shown that pressure distribution ( its value, and a pressure
variation along the radial only slightly change canopy shape ), the actual drag coefficients for particular canopies
will be dependent on actual pressure values. So the results above should not be used for estimating actual drag
coefficients, but for a relative comparison in between various shapes.

Therefore the above results may be used for a preliminary canopy shape choice, and must be supported at the
next stage by FSI analyses. Fig.29-30 show an example of some results of FSI analyses. Comparison between
simulation and experimental results for different canopy shapes is complicated by observed in simulations breathing
of some canopies and therefore an absence of a steady state condition, accurate account for a canopy permeability
and actual canopy geometry.
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Cc, canopy radius Vs gore width
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